3.336 \(\int \sqrt [3]{b \sec (e+f x)} \sqrt{d \tan (e+f x)} \, dx\)

Optimal. Leaf size=64 \[ \frac{2 \cos ^2(e+f x)^{11/12} \sqrt [3]{b \sec (e+f x)} (d \tan (e+f x))^{3/2} \, _2F_1\left (\frac{3}{4},\frac{11}{12};\frac{7}{4};\sin ^2(e+f x)\right )}{3 d f} \]

[Out]

(2*(Cos[e + f*x]^2)^(11/12)*Hypergeometric2F1[3/4, 11/12, 7/4, Sin[e + f*x]^2]*(b*Sec[e + f*x])^(1/3)*(d*Tan[e
 + f*x])^(3/2))/(3*d*f)

________________________________________________________________________________________

Rubi [A]  time = 0.04489, antiderivative size = 64, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.04, Rules used = {2617} \[ \frac{2 \cos ^2(e+f x)^{11/12} \sqrt [3]{b \sec (e+f x)} (d \tan (e+f x))^{3/2} \, _2F_1\left (\frac{3}{4},\frac{11}{12};\frac{7}{4};\sin ^2(e+f x)\right )}{3 d f} \]

Antiderivative was successfully verified.

[In]

Int[(b*Sec[e + f*x])^(1/3)*Sqrt[d*Tan[e + f*x]],x]

[Out]

(2*(Cos[e + f*x]^2)^(11/12)*Hypergeometric2F1[3/4, 11/12, 7/4, Sin[e + f*x]^2]*(b*Sec[e + f*x])^(1/3)*(d*Tan[e
 + f*x])^(3/2))/(3*d*f)

Rule 2617

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*Sec[e +
f*x])^m*(b*Tan[e + f*x])^(n + 1)*(Cos[e + f*x]^2)^((m + n + 1)/2)*Hypergeometric2F1[(n + 1)/2, (m + n + 1)/2,
(n + 3)/2, Sin[e + f*x]^2])/(b*f*(n + 1)), x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !IntegerQ[(n - 1)/2] &&  !In
tegerQ[m/2]

Rubi steps

\begin{align*} \int \sqrt [3]{b \sec (e+f x)} \sqrt{d \tan (e+f x)} \, dx &=\frac{2 \cos ^2(e+f x)^{11/12} \, _2F_1\left (\frac{3}{4},\frac{11}{12};\frac{7}{4};\sin ^2(e+f x)\right ) \sqrt [3]{b \sec (e+f x)} (d \tan (e+f x))^{3/2}}{3 d f}\\ \end{align*}

Mathematica [A]  time = 0.0784136, size = 62, normalized size = 0.97 \[ \frac{3 d \sqrt [4]{-\tan ^2(e+f x)} \sqrt [3]{b \sec (e+f x)} \, _2F_1\left (\frac{1}{6},\frac{1}{4};\frac{7}{6};\sec ^2(e+f x)\right )}{f \sqrt{d \tan (e+f x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(b*Sec[e + f*x])^(1/3)*Sqrt[d*Tan[e + f*x]],x]

[Out]

(3*d*Hypergeometric2F1[1/6, 1/4, 7/6, Sec[e + f*x]^2]*(b*Sec[e + f*x])^(1/3)*(-Tan[e + f*x]^2)^(1/4))/(f*Sqrt[
d*Tan[e + f*x]])

________________________________________________________________________________________

Maple [F]  time = 0.262, size = 0, normalized size = 0. \begin{align*} \int \sqrt [3]{b\sec \left ( fx+e \right ) }\sqrt{d\tan \left ( fx+e \right ) }\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*sec(f*x+e))^(1/3)*(d*tan(f*x+e))^(1/2),x)

[Out]

int((b*sec(f*x+e))^(1/3)*(d*tan(f*x+e))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \sec \left (f x + e\right )\right )^{\frac{1}{3}} \sqrt{d \tan \left (f x + e\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(f*x+e))^(1/3)*(d*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e))^(1/3)*sqrt(d*tan(f*x + e)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\left (b \sec \left (f x + e\right )\right )^{\frac{1}{3}} \sqrt{d \tan \left (f x + e\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(f*x+e))^(1/3)*(d*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral((b*sec(f*x + e))^(1/3)*sqrt(d*tan(f*x + e)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt [3]{b \sec{\left (e + f x \right )}} \sqrt{d \tan{\left (e + f x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(f*x+e))**(1/3)*(d*tan(f*x+e))**(1/2),x)

[Out]

Integral((b*sec(e + f*x))**(1/3)*sqrt(d*tan(e + f*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \sec \left (f x + e\right )\right )^{\frac{1}{3}} \sqrt{d \tan \left (f x + e\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(f*x+e))^(1/3)*(d*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e))^(1/3)*sqrt(d*tan(f*x + e)), x)